

BEEFFEED M EFFICIENCY PROGRAMME

Kim Matthews & Natalie Cormack

This afternoon

- 1. Brief introduction (KM)
 - What is feed efficiency & why select for it?
 - Overview of programme
- 2. Where we have got to so far (NC)
- 3. The value of breeding for feed efficiency (DP)
- 4. Where we go from here (KM)

Introduction

Kim Matthews

What is feed efficiency?

2/3 affected by management& environment

1/3 by genetics

Management & environment

Feed efficiency genetics

Why feed efficiency?

During the growing and finishing phase a 1% improvement in feed efficiency has the same economic impact as a 3% increase in rate of gain.

Selection for feed efficiency is independent of

- growth
- mature weight

Alberta & Australia results

- ↓ maintenance requiremts of cow herd by 9-10%
- → average daily gain or mature size
- **FCR** by 9 to 15 %
- A calf-weight-per-cow feed intake by 15%
- ↓ methane emissions by 25 -30%
- **V** manure N, P, K by 15 -17%

- 4 year project
- Funded by Defra and AHDB £1.75M
- Led by AHDB & SRUC
- Scottish unit funded by Scottish Government and ABP

Vision → Legacy

 demonstrate the ability to measure and select for feed intake parameters in cattle on commercial farms

 establish a system for recording after the end of the project that can be extended across cattle breeds.

Industry benefits

- Identify individual animals and sires with superior genetics for feed efficiency
- Enable breeders to actively select for feed efficiency
- Development of model(s) for longer term legacy for industry
- **U**GHG emissions

Progress to date

Natalie Cormack

Project overview

- Begin with Limousin breed
- 1800 records to collect (per breed)
- Initial 500 records collected at SRUC
- Remaining 1300 records to be collected on 3 commercial farms in England and 1 in Scotland
- Introduced second breed Angus
- Completion 2019

Jan 2018

Measuring feed efficiency

- GrowSafe feed intake recording equipment
- Known registered sire
- ≻7-12 months of age at trial start
- Measurement period 63 days
- ➢Age range within batch 8-12 weeks
- ≻Steers

Ration

TMR spec (40% DM) - Targets			
Forage in DM	50% - 70%		
ME (MJ/kg DM)	11.5-12.2		
Crude protein (% in DM)	15%		

Feed	FW Inclusion % Ingliston	DM Inclusion % Ingliston
Grass silage	58.25	50
Barley	7.11	24
Bean Silage	34.38	25
Minerals	0.26	1

Ultra-sound

	mm	Start	End
- 6	Eye muscle diam	59	68 (46-80)
	Lumbar fat depth	1.1	2.4 (0-6)

Relationship between DM intake and growth rate by sire

Residual feed intake by sire – B1&2

Commercial significance

Finishing cattle -

£19/head lower feed cost to gain 100kg LW £0.19 lower feed cost per kg LW gain

Breeding herd -Feed saving £100 per cow/calf unit per year (SRUC/Stabilisers)

The value of feed efficiency

Duncan Pullar

The future!

Kim Matthews

Our Assets h²r²

50	0.7	49.3 48.3	49	0.7	48.3	
50.5	0.7	49.8 48.8	49.49	0.7	48.79	
51	0.7	50.3 49.3	49.98	0.7	49.28	
51.5	0.7	50.8 49.8	50.47	0.7	49.77	
52	0.7	51.3 50.3	50.96	0.7		
52.5	0.7	51.8 50.8	51.45	0.7		
53	0.7	52.3 51.3	51.94	0.7		
53.5	0.7	52.8 51.7	52.43	0.7		
54	0.7	53.3 52.2	52.92	0.7		
54.5	0.7	53.8 52.7	53.41	0.7		
55	0.7	54.3 53.2	53.9	0.7		
55.5	0.7	54.8 53.7	54.39	0.7		
56	0.7	55.3 54.2	54.88	0.7		
56.5	1.1	55.4 54.3	55.37	0.7		
57	1.1	55.9 54.8	55.86	0.7		
57.5	1.1	56.4 55.3	56.35	0.7		
58	1.1	56.9 55.8	56.84	1.1		
58.5	1.1	57.4 56.3	57.33	1.1		
59	1.1	57.9 56.7	57.82	1.1		
59.5	1.1	58.4 57.2	58.31	1.1		
60	1.1	58.9 57.7	58.8	1.1		

Future principles

- Retain focus (breeding for feed efficiency)
- Fair use of the assets
- Maximum possible benefit to the British beef industry
- Revenue generated re-invested

Next steps – from a technical perspective

- Establish EBVs for Limousin
- Generate genetic parameters for Angus
- Open recording to all
 - Genomic key?
 - Apply genetic parameters to other breeds?

Governance and ownership options

- AHDB?
- Establish independent company?
- AHDB/SRUC joint venture?
- Pass the assets to another independent body? (eg CIEL)

Who leads measurement programmes

- Breed society?
- Individual Breeders?
- Supply chain?
- Other options?

COST OF DATA COLLECTION

Approximate cost per head for measurement place = £500

Sire group (av 10 animals) = £5000

N.B. does not include data analysis

Beef Carcase Traits Project Update

What have we got?

A carcase trait analysis for beef and dairy breeds linking BCMS data, abattoir data and pedigree data

These traits are being routinely evaluated:

- Carcase weight
- Carcase conformation
- Carcase fat class
- Days to slaughter

What is next?

- Reviewing presentation
 - Looking at basing EBVs to native, dairy and continental bases
 - Developing an economic index to pull traits together
- Enhancing feedback from EGENES
 - Reporting UK ministry tag
- Investigating systems for data transfer to Breed Societies

Who has supplied data so far?

	Data included in the super pedigree
Aberdeen Angus	
Beef Shorthorn	Yes
British Blonde	
British Blues	Yes
Charolais	Yes
Hereford	Yes
Limousin	Yes
Red Ruby Devon	
Simmental	
South Devon	
Stabilisers	Yes
Minor Signet Breeds	Yes

How can I supply data?

Two documents are available:

- Material Transfer Agreement with SRUC
- File specification, which has been shared with Breedplan

Plan for roll out

- New beef post within AHDB to aid dissemination
- Initial results available shortly to breeds supplying pedigree
- On-going discussion with ABRI on linking datasets
- On-going discussion with Limousin & Stabiliser
- Go-live date for Holstein planned for British Cattle Breeder's Club – ideally other beef breeds too

How can move forward?

